蒙特卡罗模拟的介绍

2024-06-21 03:26

1. 蒙特卡罗模拟的介绍


蒙特卡罗模拟的介绍

2. 蒙特卡罗模拟的蒙特卡罗方法

蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。

3. 如何用R进行蒙特卡罗模拟

蒙特卡洛模拟法求解步骤  应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下:
根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致
2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。
3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。
4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。
5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。

如何用R进行蒙特卡罗模拟

4. 蒙特卡罗模拟的基本原理及思想


5. 蒙特卡洛模拟法

一、蒙特卡洛模拟法的概念:(也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。

二、蒙特卡洛模拟法求解步骤:应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下:

1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致

2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。

3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。

4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。

5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。

蒙特卡洛模拟法

6. 蒙特卡洛模拟法

蒙特卡洛模拟技术,是用随机抽样的方法抽取一组满足输入变量的概率分布特征的数值,输入这组变量计算项目评价指标,通过多次抽样计算可获得评价指标的概率分布及累计概率分布、期望值、方差、标准差,计算项目可行或不可行的概率,从而估计项目投资所承担的风险。
蒙特卡洛模拟的步骤如下:
第一步,通过敏感性分析,确定风险变量。
第二步,构造风险变量的概率分布模型。
第三步,为各输入风险变量抽取随机数。
第四步,将抽得的随机数转化为各输入变量的抽样值。
第五步,将抽样值组成一组项目评价基础数据。
第六步,根据基础数据计算出评价指标值。
第七步,整理模拟结果所得评价指标的期望值、方差、标准差和它的概率分布及累计概率,绘制累计概率图,计算项目可行或不可行的概率。
蒙特卡洛模拟程序如图7-26所示。

图7-26 蒙特卡洛模拟程序图

【实训Ⅷ】某项目建设投资为1亿元,流动资金1000 万元,项目两年建成,第三年投产,当年达产。不含增值税年销售收入为5000万元,经营成本2000万元,附加税及营业外支出每年为50万元,项目计算期12 a。项目要求达到的项目财务内部收益率为15%,求内部收益率低于15%的概率。
由于蒙特卡洛模拟的计算量非常大,必须借助计算机来进行。本案例通过手工计算,模拟20次,主要是演示模拟过程。
(1)确定风险变量。通过敏感性分析,得知建设投资、产品销售收入、经营成本为主要风险变量。流动资金需要量与经营成本线性相关,不作为独立的输入变量。
(2)构造概率分布模型。建设投资变化概率服从三角形分布,其悲观值为1.3亿元、最大可能值为1亿元、乐观值为9000万元,如图7-27所示。年销售收入服从期望值为5000万元、σ=300万元的正态分布。年经营成本服从期望值为2000万元、σ=100 万元的正态分布。

图7-27 投资三角形分布图

建设投资变化的三角形分布的累计概率,见表7-16及图7-27所示。

表7-16 投资额三角形分布累计概率表

(3)对投资、销售收入、经营成本分别抽取随机数,随机数可以由计算机产生,或从随机数表中任意确定起始数后,顺序抽取。本例从随机数表(表7-20)中抽取随机数。假定模拟次数定为k=20,从随机数表中任意从不同地方抽取三个20 个一组的随机数,见表7-17。

表7-17 输入变量随机抽样取值

(4)将抽得的随机数转化为各随机变量的抽样值。
这里以第1组模拟随机变量产生做出说明。
1)服从三角形分布的随机变量产生方法。
根据随机数在累计概率表(表7-16)或累计概率图(图7-28)中查取。投资的第1个随机数为48867万元,查找累计概率0.48 867所对应的投资额,从表7-16中查得投资额在10300与10600之间,通过线性插值可得
第1个投资抽样值=10300+300×(48867-39250)/(52000-39250)=10526万元
2)服从正态分布的随机变量产生方法。
从标准正态分布表(表7-21)中查找累计概率与随机数相等的数值。例如销售收入第1个随机数06242,查标准正态分布表得销售收入的随机离差在-1.53与-1.54之间,经线性插值得-1.5348。

图7-28 投资的累计概率分布图

第1个销售收入抽样值=5000-1.5348×300≈4540万元。
同样,经营成本第一个随机数66 903相应的随机变量离差为0.4328,第一个经营成本的抽样值=2000+100×0.4328=2043万元。
3)服从离散型分布的随机变量的抽样方法。
本例中没有离散型随机变量。另举例如下,据专家调查获得的某种产品售价的概率分布见表7-18。

表7-18 某种产品售价的概率分布

根据上表绘制累计概率如图7-29所示。
若抽取的随机数为43252,从累计概率图纵坐标上找到累计概率为0.43252,划一水平线与累计概率折线相交的交点的横坐标值125元,即是售价的抽样值。
(5)投资、销售收入、经营成本各20个抽样值组成20组项目评价基础数据。
(6)根据20组项目评价基础数据,计算出20 个计算项目评价指标值,即项目财务内部收益率。
(7)模拟结果达到预定次数后,整理模拟结果按内部收益率从小到大排列并计算累计概率,见表7-19所示。
从累计概率表可知内部收益率低于15%的概率为15%,内部收益率高于15%的概率为85%。

图7-29 售价累计概率曲线


表7-19 蒙特卡洛模拟法累积概率计算表

①每次模拟结果的概率=1/模拟次数。

7. 蒙特卡洛模拟法

一、蒙特卡洛模拟法的概念:(也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。
二、蒙特卡洛模拟法求解步骤:应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下:
1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致
2
.根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。
3.
根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。
4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。
5.
统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。

蒙特卡洛模拟法

8. 拟蒙特卡罗方法的应用

考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点落于“图形”内,则该“图形”的面积近似为M/N。可用民意测验来作一个不严格的比喻。民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。其基本思想是一样的。科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Curse Dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。Monte Carlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。以前那些本来是无法计算的问题现在也能够计算量。为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。